Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36234317

RESUMO

Three corrosion potentials and three corrosion current densities are clearly identified before the passivation for both dynamic polarization curves of equimolar CoCrFeNi high-entropy alloy (HEA) and 304 stainless steel (304SS) in 0.5 M H2SO4 aerated aqueous solution, by decomposing anodic and cathodic polarization curves. The passivated current density of the former is greater than the latter, compliant with not only the constant of solubility product (ksp) and redox equilibrium potential (Eeq) of each metal hydroxide but also the sequence of bond energy (Eb) for monolayer hydroxide on their facets derived from the first principle founded on density function theory. However, the total amount of ion releasing from HEA is less than 304SS, since the hydroxide/oxide film formed in the air of the latter containing greater amounts of Fe(Ⅱ) and Mn(Ⅱ) is less stable around corrosion potentials while they are further oxidized into more stable Fe(Ⅲ) and Mn(ⅢorⅣ) with much lower ksp, leading to the much less increasing ratios of ion releases from 0.25 to 0.6 V.

2.
Am J Transl Res ; 13(8): 8683-8696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539987

RESUMO

Downregulation of inward rectifier potassium (IK1) channel is a hallmark in cardiac hypertrophy and failure. The cardioprotection of zacopride (a selective IK1 agonist) and underlying mechanisms were investigated in L-thyroxine (T4) or Triiodothyronine (T3)-induced cardiac remodeling. In the in vivo study, adult male Sprague-Dawley (SD) rats were randomly divided into control, L-thyroxine, L-thy+zacopride, and L-thy+zacopride+chloroquine (an IK1 antagonist) groups. Echocardiography, histopathology, TUNEL assay, western blotting and confocal imaging for intracellular Ca2+ fluorescence were performed. In the in vitro study, zacopride and nifedipine (a LTCC blocker) were used to compare their effects on Kir2.1, SAP97, autophagy, and [Ca2+]i in H9C2 (2-1) cardiomyocytes. Zacopride treatment attenuated L-thyroxine- or T3 induced cardiac remodeling and dysfunction which manifested as cardiac hypertrophy and collagen deposition, dilated ventricle, decreased ejection fraction (EF), increased cardiomyocytes apoptosis, hyper-activation of CaMKII and PI3K/Akt/mTOR signaling, decreased cardiac autophagy, and increased expression of integrin ß3. The cardioprotection of zacopride is strongly associated with the upregulation of IK1, SAP97, and [Ca2+]i homeostasis in cardiomyocytes. IK1 antagonist chloroquine or BaCl2 reversed these effects. Nifedipine could attenuate intracellular Ca2+ overload with no significant effects on IK1, SAP97, and autophagy. This study showed that zacopride could improve cardiac remodeling via facilitating Kir2.1 forward trafficking, and negatively regulating calcium-activated and PI3K/Akt/mTOR signalings, in an IK1-dependent manner.

3.
Nanotechnology ; 31(27): 275204, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32208372

RESUMO

A new flexible memory element is crucial for mobile and wearable electronics. A new concept for memory operation and innovative device structure with new materials is certainly required to address the bottleneck of memory applications now and in the future. We report a new nonvolatile molecular memory with a new operating mechanism based on two-dimensional (2D) material nanochannel field-effect transistors (FETs). The smallest channel length for our 2D material nanochannel FETs was approximately 30 nm. The modified molecular configuration for charge induced in the nanochannel of the MoS2 FET can be tuned by applying an up-gate voltage pulse, which can vary the channel conductance to exhibit memory states. Through controlling the amounts of triggered molecules through either different gate voltage pulses or gate duration time, multilevel states were obtained in the molecular memory. These new molecular memory transistors exhibited an erase/program ratio of more than three orders of current magnitude and high sensitivity, of a few picoamperes, at the current level. Reproducible operation and four-level states with stable retention and endurance were achieved. We believe this prototype device has potential for use in future memory devices.

4.
Front Pharmacol ; 10: 929, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507422

RESUMO

Intracellular Ca2+ overload, prolongation of the action potential duration (APD), and downregulation of inward rectifier potassium (IK1) channel are hallmarks of electrical remodeling in cardiac hypertrophy and heart failure (HF). We hypothesized that enhancement of IK1 currents is a compensation for IK1 deficit and a novel modulation for cardiac Ca2+ homeostasis and pathological remodeling. In adult Sprague-Dawley (SD) rats in vivo, cardiac hypertrophy was induced by isoproterenol (Iso) injection (i.p., 3 mg/kg/d) for 3, 10, and 30 days. Neonatal rat ventricular myocytes (NRVMs) were isolated from 1 to 3 days SD rat pups and treated with 1 µmol/L Iso for 24 h in vitro. The effects of zacopride, a selective IK1/Kir2.1 channel agonist, on cardiac remodeling/hypertrophy were observed in the settings of 15 µg/kg in vivo and 1 µmol/L in vitro. After exposing to Iso for 3 days and 10 days, rat hearts showed distinct concentric hypertrophy and fibrosis and enhanced pumping function (P < 0.01 or P < 0.05), then progressed to dilatation and dysfunction post 30 days. Compared with the age-matched control, cardiomyocytes exhibited higher cytosolic Ca2+ (P < 0.01 or P < 0.05) and lower SR Ca2+ content (P < 0.01 or P < 0.05) all through 3, 10, and 30 days of Iso infusion. The expressions of Kir2.1 and SERCA2 were downregulated, while p-CaMKII, p-RyR2, and cleaved caspase-3 were upregulated. Iso-induced electrophysiological abnormalities were also manifested with resting potential (RP) depolarization (P < 0.01), APD prolongation (P < 0.01) in adult cardiomyocytes, and calcium overload in cultured NRVMs (P < 0.01). Zacopride treatment effectively retarded myocardial hypertrophy and fibrosis, preserved the expression of Kir2.1 and some key players in Ca2+ homeostasis, normalized the RP (P < 0.05), and abbreviated APD (P < 0.01), thus lowered cytosolic [Ca2 +]i (P < 0.01 or P < 0.05). IK1channel blocker BaCl2 or chloroquine largely reversed the cardioprotection of zacopride. We conclude that cardiac electrical remodeling is concurrent with structural remodeling. By enhancing cardiac IK1, zacopride prevents Iso-induced electrical remodeling around intracellular Ca2+ overload, thereby attenuates cardiac structural disorder and dysfunction. Early electrical interventions may provide protection on cardiac remodeling.

5.
Langmuir ; 35(20): 6782-6792, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31042867

RESUMO

Membranes for biologically and biomedically related applications must be bioinert, that is, resist biofouling by proteins, human cells, bacteria, algae, etc. Hydrophobic materials such as polysulfone, polypropylene, or poly(vinylidene fluoride) (PVDF) are often chosen as matrix materials but their hydrophobicity make them prone to biofouling, which in turn limits their application in biological/biomedical fields. Here, we designed PVDF-based membranes by precipitation from the vapor phase and zwitterionized them in situ to reduce their propensity to biofouling. To achieve this goal, we used a copolymer containing phosphorylcholine groups. An in-depth physicochemical characterization revealed not only the controlled presence of the copolymer in the membrane but also that bicontinuous membranes could be formed. Membrane hydrophilicity was greatly improved, resulting in the mitigation of a variety of biofoulants: the attachment of Stenotrophomonas maltophilia, Streptococcus mutans, and platelets was reduced by 99.9, 99.9, and 98.9%, respectively. Besides, despite incubation in a plasma platelet-poor medium, rich in plasma proteins, a flux recovery ratio of 75% could be measured while it was only 40% with a hydrophilic commercial membrane of similar structure and physical properties. Similarly, the zwitterionic membrane severely mitigated biofouling by microalgae during their harvesting. All in all, the material/process combination presented in this work leads to antibiofouling porous membranes with a large span of potential biomedically and biologically related applications.

6.
ACS Appl Mater Interfaces ; 10(11): 9645-9652, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29309121

RESUMO

Direct reduction of metal oxides into a few transition metal dichalcogenide (TMDCs) monolayers has been recently explored as an alternative method for large area and uniform deposition. However, not many studies have addressed the characteristics and requirement of the metal oxides into TMDCs by the selenization/sulfurization processes, yielding a wide range of outstanding properties to poor electrical characteristics with nonuniform films. The large difference implies that the process is yet not fully understood. In particular, the selenization/sulfurization at low temperature leads to poor crystallinity films with poor electrical performance, hindering its practical development. A common approach to improve the quality of the selenized/sulfurized films is by further increasing the process temperature, thus requiring additional transfer in order to explore the electrical properties. Here, we show that by finely tuning the quality of the predeposited oxide the selenization/sulfurization temperature can be largely decreased, avoiding major substrate damage and allowing direct device fabrication. The direct relationship between the role of selecting different metal oxides prepared by e-beam evaporation and reactive sputtering and their oxygen deficiency/vacancy leading to quality influence of TMDCs was investigated in detail. Because of its outstanding physical properties, the formation of tungsten diselenide (WSe2) from the reduction of tungsten oxide (WO x) was chosen as a model for proof of concept. By optimizing the process parameters and the selection of metal oxides, layered WSe2 films with controlled atomic thickness can be demonstrated. Interestingly, the domain size and electrical properties of the layered WSe2 films are highly affected by the quality of the metal oxides, for which the layered WSe2 film with small domains exhibits a metallic behavior and the layered WSe2 films with larger domains provides clear semiconducting behavior. Finally, an 8'' wafer scale-layered WSe2 film was demonstrated, giving a step forward in the development of 2D TMDC electronics in the industry.

7.
Polymers (Basel) ; 10(6)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-30966638

RESUMO

2,6-Di(9H-carbazol-9-yl)pyridine (DiCP) was synthesized and its corresponding homopolymer (PDiCP) and copolymers (P(DiCP-co-CPDT), P(DiCP-co-CPDT2), P(DiCP-co-CPDTK), and P(DiCP-co-CPDTK2)) were synthesized electrochemically. The anodic copolymer with DiCP:cyclopentadithiophene ketone (CPDTK) = 1:1 feed molar ratio showed high transmittance change (ΔT%) and colouration efficiency (η), which were measured as 39.5% and 184.1 cm² C-1 at 1037 nm, respectively. Electrochromic devices (ECDs) were composed of PDiCP, P(DiCP-co-CPDT), P(DiCP-co-CPDT2), P(DiCP-co-CPDTK), and P(DiCP-co-CPDTK2) as anodically-colouring polymers, and poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) (PEDOT-PSS) as cathodically-colouring polymers. P(DiCP-co-CPDTK)/PEDOT-PSS ECD showed light silverish-yellow at 0.0 V, light grey at 0.7 V, grey at 1.3 V, light greyish blue at 1.7 V, and greyish blue at 2.0 V. Moreover, P(DiCP-co-CPDTK)/PEDOT-PSS ECD presented high ΔT (38.2%) and high η (633.8 cm² C-1) at 635 nm.

8.
PLoS One ; 12(5): e0177600, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542320

RESUMO

Arrhythmogenesis in acute myocardial infarction (MI) is associated with depolarization of resting membraine potential (RMP) and decrease of inward rectifier potassium current (IK1) in cardiomyocytes. However, clinical anti-arrhythmic agents that primarily act on RMP by enhancing the IK1 channel are not currently available. We hypothesized that zacopride, a selective and moderate agonist of the IK1/Kir2.1 channels, prevents and cures acute ischemic arrhythmias. To test this viewpoint, adult Sprague-Dawley (SD) rats were subjected to MI by ligating the left main coronary artery. The antiarrhythmic effects of zacopride (i.v. infusion) were observed in the settings of pre-treatment (zacopride given 3 min prior to coronary occlusion), post-treatment (zacopride given 3 min after coronary occlusion) and therapeutic treatment (zacopride given 30 s after the onset of the first sustained ventricular tachycardia (VT)/ventricular fibrillation (VF) post MI). In all the three treatment modes, zacopride (15 µg/kg) inhibited MI-induced ventricular tachyarrhythmias, as shown by significant decreases in the premature ventricular contraction (PVC) and the duration and incidence of VT or VF. In Langendorff perfused rat hearts, the antiarrhythmic effect of 1 µmol/L zacopride were reversed by 1 µmol/L BaCl2, a blocker of IK1 channel. Patch clamp results in freshly isolated rat ventricular myocytes indicated that zacopride activated the IK1 channel and thereby reversed hypoxia-induced RMP depolarization and action potential duration (APD) prolongation. In addition, zacopride (1 µmol/L) suppressed hypoxia- or isoproterenol- induced delayed afterdepolarizations (DADs). In Kir2.x transfected Chinese hamster ovary (CHO) cells, zacopride activated the Kir2.1 homomeric channel but not the Kir2.2 or Kir2.3 channels. These results support our hypothesis that moderately enhancing IK1/Kir2.1 currents as by zacopride rescues ischemia- and hypoxia- induced RMP depolarization, and thereby prevents and cures acute ischemic arrhythmias. This study brings a new viewpoint to antiarrhythmic theories and provides a promising target for the treatment of acute ischemic arrhythmias.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/prevenção & controle , Benzamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Isquemia Miocárdica/complicações , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Potenciais de Ação/efeitos dos fármacos , Doença Aguda , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologia , Benzamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Células CHO , Hipóxia Celular/efeitos dos fármacos , Cricetulus , Isoproterenol/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley
9.
Nanoscale Res Lett ; 12(1): 315, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28454481

RESUMO

We report a low current collapse GaN-based high electron mobility transistor (HEMT) with an excellent thermal stability at 150 °C. The AlN was grown by N2-based plasma enhanced atomic layer deposition (PEALD) and shown a refractive index of 1.94 at 633 nm of wavelength. Prior to deposit AlN on III-nitrides, the H2/NH3 plasma pre-treatment led to remove the native gallium oxide. The X-ray photoelectron spectroscopy (XPS) spectroscopy confirmed that the native oxide can be effectively decomposed by hydrogen plasma. Following the in situ ALD-AlN passivation, the surface traps can be eliminated and corresponding to a 22.1% of current collapse with quiescent drain bias (V DSQ) at 40 V. Furthermore, the high temperature measurement exhibited a shift-free threshold voltage (V th), corresponding to a 40.2% of current collapse at 150 °C. The thermal stable HEMT enabled a breakdown voltage (BV) to 687 V at high temperature, promising a good thermal reliability under high power operation.

10.
J Cardiovasc Pharmacol ; 64(4): 345-56, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286360

RESUMO

Activating IK1 channels is considered to be a promising antiarrhythmic strategy. Zacopride has been identified as a selective IK1 channel agonist and can suppress triggered arrhythmias. Whether this drug also exerts a beneficial effect on cardiac remodeling is unknown, and the present study sought to address this question. Cardiac remodeling was induced through coronary ligation-induced myocardial infarction (MI) in male Sprague-Dawley rats. Zacopride (15 µg/kg) was administered (intraperitoneally) daily for 28 days after MI to determine whether it could attenuate MI-induced cardiac remodeling. A 4-week treatment with zacopride attenuated post-MI cardiac remodeling, as shown by the reduced left ventricular end-diastolic dimension and left ventricular end-systolic dimension and the increased ejection fraction and fractional shortening in zacopride-treated animals compared with animals treated with vehicle (all P < 0.05). Furthermore, zacopride significantly decreased myocardial collagen deposition, cardiomyocyte hypertrophy, the plasma level of brain natriuretic peptide, and cardiomyocyte ultrastructural injury. Zacopride also upregulated the expression of the IK1 channel protein and downregulated the expression of phosphorylated p70S6 kinase (p-p70S6K) and mTOR. These beneficial effects of zacopride were partially abolished by the IK1 channel blocker chloroquine. We conclude that the activation of IK1 channel by zacopride attenuates post-MI cardiac remodeling by suppressing mTOR-p70S6 kinase signaling.


Assuntos
Antiarrítmicos/uso terapêutico , Benzamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Remodelação Ventricular/efeitos dos fármacos , Animais , Antiarrítmicos/administração & dosagem , Benzamidas/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Cloroquina/sangue , Cloroquina/farmacologia , Ecocardiografia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Ratos Sprague-Dawley
11.
J Cardiovasc Pharmacol ; 64(4): 357-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25072868

RESUMO

Zacopride, an IK1 agonist with moderate potency, could exert significant antiarrhythmic and cardiac protective effects. To date, there is no report to show that zacopride is proarrhythmic in both experimental studies and clinical trials. However, in certain cardiac pathological conditions, especially short QT syndrome and certain reentry tachycardia, zacopride is not suggested. Further studies are needed to precisely evaluate the potential arrhythmogenic risk of zacopride.


Assuntos
Arritmias Cardíacas/prevenção & controle , Benzamidas/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Cardiotônicos/efeitos adversos , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Animais , Arritmias Cardíacas/patologia , Benzamidas/administração & dosagem , Benzamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Cardiotônicos/administração & dosagem , Cardiotônicos/uso terapêutico , Eletrocardiografia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores
12.
PLoS One ; 9(7): e101545, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24992664

RESUMO

PURPOSE: The potential hazardous effects of multi-walled carbon nanotubes (MWCNTs) on cardiac electrophysiology are seldom evaluated. This study aimed to investigate the impacts of MWCNTs on the Kv4/Ito channel, action potential and heart rhythm and the underlying mechanisms. METHODS: HEK293 cells were engineered to express Kv4.2 or Kv4.3 with or without KChIP2 expression. A series of approaches were introduced to analyze the effects of MWCNTs on Kv4/Ito channel kinetics, current densities, expression and trafficking. Transmission electron microscopy was performed to observe the internalization of MWCNTs in HEK293 cells and rat cardiomyocytes. Current clamp was employed to record the action potentials of isolated rat cardiomyocytes. Surface ECG and epicardial monophasic action potentials were recorded to monitor heart rhythm in rats in vivo. Vagal nerve discharge monitoring and H&E staining were also performed. RESULTS: Induction of MWCNTs into the cytosole through pipette solution soon accelerated the decay of IKv4 in HEK293 cells expressing Kv4.2/4.3 and KChIP2, and promoted the recovery from inactivation when Kv4.2 or Kv4.3 was expressed alone. Longer exposure (6 h) to MWCNTs decreased the IKv4.2 density, Kv4.2/Kv4.3 (but not KChIP2) expression and trafficking towards the plasma membrane in HEK293 cells. In acutely isolated rat ventricular myocytes, pipette MWCNTs also quickly accelerated the decay of IKv4 and prolonged the action potential duration (APD). Intravenous infusion of MWCNTs (2 mg/rat) induced atrioventricular (AV) block and even cardiac asystole. No tachyarrhythmia was observed after MWCNTs administration. MWCNTs did not cause coronary clot but induced myocardial inflammation and increased vagus discharge. CONCLUSIONS: MWCNTs suppress Kv4/Ito channel activities likely at the intracellular side of plasma membrane, delay membrane repolarization and induce bradyarrhythmia. The delayed repolarization, increased vagus output and focal myocardial inflammation may partially underlie the occurrence of bradyarrhythmias induced by MWCNTs. The study warns that MWCNTs are hazardous to cardiac electrophysiology.


Assuntos
Bradicardia/etiologia , Nanotubos de Carbono/toxicidade , Canais de Potássio Shal/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Humanos , Transporte de Íons/efeitos dos fármacos , Cinética , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Nanotubos de Carbono/química , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Canais de Potássio Shal/genética
13.
Sheng Li Xue Bao ; 64(6): 751-7, 2012 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-23258341

RESUMO

The cardiac inwardly rectifying potassium channel (I(K1)), which is mainly expressed in mammalian atrial and ventricular myocytes, has been considered as the primary conductance controlling the resting potential (RP) and permitting a significant repolarizing current during the terminal phase of action potential. Therefore, I(K1) is highly influential on the RP, and the modulation of I(K1) would likely have profound effects on cardiac excitability and arrhythmogenesis. This article may shed light on the fundamental properties of cardiac I(K1), the mechanisms of inward rectification and I(K1) subunits composition. Furthermore, the article discusses the role of I(K1) in ventricular excitability and arrhythmogenesis and explores the possibility of modulating I(K1) as an antiarrhythmic mechanism. In fact, both blocking and enhancing I(K1) could be antiarrhythmic, but have proarrhythmic potential at the same time. Action potential duration (APD) prolongation has been accepted as an important antiarrhythmic strategy with some evidence in animal models of arrhythmogenesis that I(K1) blockade can prolongate APD and be antiarrhythmic. However, the potential of I(K1) blockade has not resulted in the development of specific I(K1) blockers used clinically. Safety concerns are probably the main reason, and the therapeutic potential for I(K1) blockers seems somewhat small. On the contrary, the up to date reports indicate that moderately activating I(K1) and hyperpolarizing the RP which has been depolarized by pathologic injury are to be feasible and effective to alleviate some kinds of ventricular arrhythmias.


Assuntos
Arritmias Cardíacas/fisiopatologia , Coração/fisiopatologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Potenciais de Ação , Animais , Ventrículos do Coração/fisiopatologia , Potenciais da Membrana
14.
J Cardiovasc Pharmacol ; 59(1): 37-48, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21921806

RESUMO

Modulation of the inward rectifier K current (IK1) has profound effect on cardiac excitability and underlies new antiarrhythmic strategies. However, IK1-specific pharmacological tools, especially the selective IK1 agonists, are still lacking in the market. Zacopride, a gastrointestinal prokinetic drug, was found to be a selective IK1 channel agonist. By using the whole-cell patch clamp technique, it was found that zacopride (0.1-10 µmole/L) dose dependently enhanced the IK1 current in isolated rat cardiomyocytes, had no effects on other ion channels, transporters, or pumps. At the same dosage range, zacopride hyperpolarized the resting potential and shortened the action potential duration. When applied at the optimal dose of 1.0 µmole/L, zacopride could prevent or eliminate aconitine induced after depolarization and triggered activity in isolated cardiomyocytes. In a rat model of aconitine-induced arrhythmias both ex vivo and in vivo, zacopride (1.0 µmole/L or 25 µg/kg, respectively) treatment apparently protected the heart from ventricular tachyarrhythmias, which compares favorably with 7.5 mg/kg of lidocaine, a classical aconitine antidote. In conclusion, zacopride was found to be a selective IK1 agonist, and agonizing IK1 could prevent or eliminate aconitine-induced arrhythmias in the rat.


Assuntos
Antiarrítmicos/uso terapêutico , Benzamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Taquicardia Ventricular/tratamento farmacológico , Aconitina/farmacologia , Animais , Antiarrítmicos/administração & dosagem , Antiarrítmicos/farmacologia , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrocardiografia , Cobaias , Masculino , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Taquicardia Ventricular/metabolismo
15.
Sheng Li Xue Bao ; 62(5): 407-14, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-20945042

RESUMO

Considering that α-1 repeat region may be involved in the ion binding and translocation of Na(+)-Ca(2+) exchanger (NCX), it is possible that the antibodies against NCX α-1 repeat may have a crucial action on NCX activity. The aim of the present study is to investigate the effect of antibody against α-1 repeat (117-137), designated as α-1(117-137), on NCX activity. The antibody against the synthesized α-1(117-137) was prepared and affinity-purified. Whole-cell patch clamp technique was used to study the change of Na(+)-Ca(2+) exchange current (I(Na/Ca)) in adult rat cardiomyocytes. To evaluate the functional specificity of this antibody, its effects on L-type Ca(2+) current (I(Ca,L)), voltage-gated Na(+) current (I(Na)) and delayed rectifier K(+) current (I(K)) were also observed. The amino acid sequences of α-1(117-137) in NCX and residues 1 076-1 096 within L-type Ca(2+) channel were compared using EMBOSS Pairwise Alignment Algorithms. The results showed that outward and inward I(Na/Ca) were decreased by the antibody against α-1(117-137) dose-dependently in the concentration range from 10 to 160 nmol/L, with IC(50) values of 18.9 nmol/L and 22.4 nmol/L, respectively. Meanwhile, the antibody also decreased I(Ca,L) in a concentration-dependent manner with IC(50) of 22.7 nmol/L. No obvious effects of the antibody on I(Na) and I(K) were observed. Moreover, comparison of the amino acid sequences showed there was 23.8% sequence similarity between NCX α-1(117-137) and residues 1 076-1 096 within L-type Ca(2+) channel. These results suggest that antibody against α-1(117-137) is a blocking antibody to NCX and can also decrease I(Ca,L) in a concentration-dependent manner, while it does not have obvious effects on I(Na) and I(K).


Assuntos
Anticorpos Bloqueadores/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anticorpos Bloqueadores/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/imunologia , Canais de Cálcio Tipo L/metabolismo , Cobaias , Potenciais da Membrana , Dados de Sequência Molecular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/imunologia
16.
Cardiovasc Drugs Ther ; 23(3): 207-14, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19221884

RESUMO

PURPOSE: Dofetilide (DOF), a novel Class III antiarrhythmic drug, prolongs the action potential duration (APD) and shows a positive inotropic effect in guinea pig papillary muscle. The present experiments were designed to study the positive inotropic effect of DOF on rat ventricle and explore its possible mechanism(s). METHODS: Hearts from male Wistar rats (260-320 g) were divided into five groups and perfused in Langendorff mode. Ventricular myocytes were enzymatically isolated from male Wistar rats. Whole-cell voltage-clamping technique was used to test the Na(+)-Ca(2+) exchange (NCE) current (I(NCX)); Calcium transients and cell shortening provoked by field stimulation or using calcium current command waveform were observed synchronously with an ionic imaging system. RESULTS: DOF (0.03-1.0 microM) increased left ventricular function in isolated rat hearts in a concentration-dependent manner. DOF (0.03-1.0 microM) also concentration-dependently increased both inward and outward I (NCX) in isolated rat ventricular cells. The EC(50) values of DOF were 0.149 microM for the inward I(NCX) and 0.249 microM for outward I(NCX), respectively. DOF 0.2 microM significantly enhanced Ca(2+) transient and cell shortening in single rat ventricular myocytes driven by field electric stimulation. When the patch clamp system was connected to the ionic imaging system, Ca(2+) current (I(Ca)), Ca(2+) transient and cell shortening amplitude in a same cell were recorded synchronously. Application of DOF 0.2 microM had no effect on I(Ca), but significantly increased Ca(2+) transient and cell shortening. NCX inhibitor KB-R7943 0.6 microM significantly depressed the effects of DOF on Ca(2+) transient and cell shortening. CONCLUSIONS: We conclude that DOF enhanced contractility of rat ventricular myocytes. The enhancement of NCE may be involved in the positive inotropic action of DOF.


Assuntos
Antiarrítmicos/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fenetilaminas/farmacologia , Trocador de Sódio e Cálcio/agonistas , Sulfonamidas/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Trocador de Sódio e Cálcio/antagonistas & inibidores , Tioureia/análogos & derivados , Tioureia/farmacologia
18.
Acta Pharmacol Sin ; 29(10): 1175-80, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18817621

RESUMO

AIM: The aim of the present study was to investigate the effect of the antibody against alpha-2 repeat on Na+-Ca2+ exchanger (NCX) current (I(Na/Ca)). To evaluate the functional specificity of this antibody, its effects on L-type Ca2+ current (I(Ca,L)), voltage-gated Na+ current (I(Na)) and delayed rectifier K+ current (I(K)) were also observed. METHODS: The whole-cell patch-clamp technique was used in this study. RESULTS: The antibody against alpha-2 repeat augmented both the outward and inward Na+-Ca2+ exchanger current concentration-dependently, with EC(50) values of 27.9 nmol/L and 24.7 nmol/L, respectively. Meanwhile, the antibody could also increase I(Ca,L) in a concentration-dependent manner with the EC(50) of 33.6 nmol/L. Effects of the antibody on I(Na) and I(K) were not observed in the present study. CONCLUSION: The present results suggest that antibody against alpha-2 repeat is a stimulating antibody to NCX and could also increase I(Ca,L) in a concentration-dependent manner, but did not have an obvious effect on I(Na) and I(K).


Assuntos
Anticorpos Bloqueadores/farmacologia , Cálcio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Sódio/metabolismo , Sequência de Aminoácidos , Animais , Eletrofisiologia , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Trocador de Sódio e Cálcio/imunologia
19.
Sheng Li Xue Bao ; 60(1): 38-42, 2008 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-18288356

RESUMO

In the present study, whole-cell patch-clamp technique was used to observe the effects of SNC162, a selective agonist of δ-opioid receptors, on L-type Ca(2+) current (I(Ca-L)) and transient outward K(+) current (I(to)) in rat ventricular myocytes. The results showed that SNC162 significantly inhibited I(Ca-L) and I(to) in rat ventricular myocytes. The maximal inhibition rate of I(Ca-L) and I(to) reached (46.13±4.12)% and (36.53±10.57)%, respectively. SNC162 at 1×10(-4) mol/L inhibited the current density of I(Ca-L) from (8.98±0.40) pA/pF to (4.84±0.44) pA/pF (P<0.01, n=5) and inhibited that of I(to) from (18.69±2.42) pA/pF to (11.73±1.67) pA/pF (P<0.01, n=5). Furthermore, the effects of naltrindole, a highly selective antagonist of δ-opioid receptors, on I(Ca-L) and I(to) were also observed. The results showed that naltrindole alone had no effects on I(Ca-L) and I(to), while it abolished the inhibitory effects of SNC162 on I(Ca-L) and I(to). In conclusion, SNC162 concentration-dependently inhibited I(Ca-L) and I(to) in rat ventricular myocytes via activation of the δ-opioid receptors, which may be a fundamental mechanism underlying the antiarrhythmic effect of activating δ-opioid receptors.


Assuntos
Benzamidas/farmacologia , Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Piperazinas/farmacologia , Canais de Potássio/metabolismo , Receptores Opioides delta/agonistas , Animais , Antiarrítmicos , Células Cultivadas , Ventrículos do Coração/citologia , Miócitos Cardíacos/metabolismo , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Técnicas de Patch-Clamp , Ratos
20.
Sheng Li Xue Bao ; 60(1): 156-60, 2008 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-18288372

RESUMO

To establish a method for preparation of anti-mouse adiponectin receptor-1 (AdipoR-1) polyclonal antibody, the polypeptide antigen corresponding to AdipoR-1 was designed by bioinformatics analysis. The possible physicochemical property and trans-membrane structure were predicted by ExPASy and TMHMM, respectively. The antigen epitopes of mouse AdipoR-1 and its immunogenicity were analyzed by Antigenic Prediction and AntigenProfiler, respectively. According to the similarity analysis between AdipoR-1 and AdipoR-2 by Clustal W, a 16-amino acid polypeptide was designed as the antigen corresponding to AdipoR-1. To ensure the specificity of the polypeptide antigen, similarity search was run in the protein databases such as SWISS-PROT, PDB and Prosite databases. The polypeptide synthesized by solid-phase synthesis was used as immunogen to immunize rats to obtain anti-mouse AdipoR-1 polyclonal antibodies, the specificity and titer of which was identified by Western blot and indirect ELISA. The antibodies were applied to detect the AdipoR-1 expression in the muscle tissue in normal and cholesterolemic mice. The results from bioinformatics analysis showed that the similarity of amino acid sequences between AdipoR-1 and AdipoR-2 in mouse was 66%, and the designed polypeptide antigen corresponding to AdipoR-1 exhibited excellent immunogenicity (score=3.1). Using the polypeptide as antigen for immunization, anti-mouse AdipoR-1 polyclonal antibodies with high titer and good specificity were obtained. The results of Western blot demonstrated that there was no statistical difference in AdipoR-1 expression in muscle tissue between normal (1.80±0.06) and cholesterolemic mice (1.71±0.11). These results suggest that the antigen epitopes of mouse AdipoR-1 are well predicted by bioinformatics analysis, and successful preparation of the specific anti-AdipoR-1 polyclonal antibodies provides a useful tool for identification and further functional study of AdipoR-1.


Assuntos
Anticorpos/química , Biologia Computacional , Receptores de Adiponectina/química , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Western Blotting , Ensaio de Imunoadsorção Enzimática , Epitopos , Camundongos , Peptídeos , Ratos , Receptores de Adiponectina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...